

NANOFIBERS THE SUPER MATERIAL OF THE FUTURE

Tibtech Innovations @ 2004 - 2024 All right Reserved www.tibtech.com

- Connected textiles

- Composites functionalization
- Catalyse and high temperatures

Magic fiber

OIL ABSORBENT

WHAT IS MAGIC FIBER OIL ABSORBENT?

M-TEchX has developed a system that enables the mass production of nano-scale fibers. The Nanofiber brand "MAGIC FIBER" was born. Nanofibers are ultra-fine fibers that are less than 1/100 the thickness of a hair.

Mass Production Technology

1. Mass production possible Production volume: 30kg/h \Rightarrow Creation of fibers with unique effects

*When M-TEchX melting system equipment is used

2. Technology allows replacement of diverse plastic materials into those made from nanofibers *Plastic materials, etc.

3. Technology makes realization of fiber-layered (3D) structures possible

Name	Magic Fiber Oil Adsorbent (for professional use)				
Use	Adsorption of oil, including industrial and cooking oil				
Specification	20 g per sheet, 30 cm x 30 cm (can be customized upon customer's req				
Raw materials	Polypropylene				
Structure	Special structure containing nano-sized fibers.				
Performance	Adsorbs about 50 times its own weight in oil.				
Uses	 Disposal of used or leaked oil, e.g. in manufacturing plants Removal of oil from water Grease trap oil removal Oil removal during disasters (oil spills) Emergency reserves e.g. 				

OIL ABSORBENT

quest)		

FEATURES AND ADVANTAGES

Fiber structure that meets the characteristics required for oil absorbents, with unparalleled performance compared to conventional products.

SUPER ABSORBENCY: 50 TIMES ITS OWN WEIGHT

(10X that of competitors' products)

Absorbs a large amount of oil 1 sheet (20g) - 1L MAX

No secondary cleaning: Work time and effort reduced by 1/2

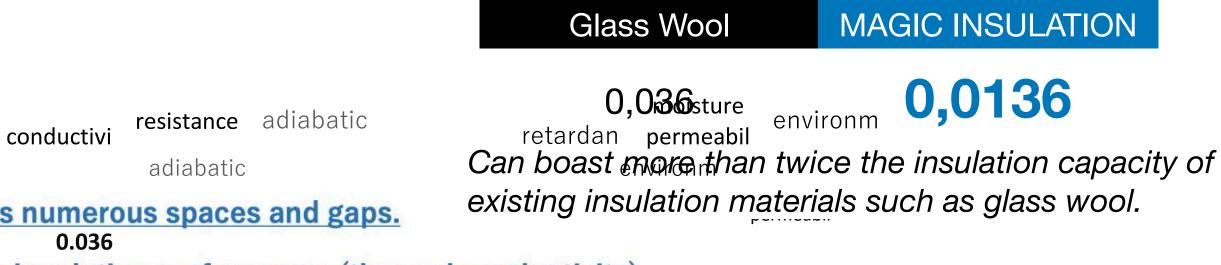
Effectively removes oil from the water surface. Number of used sheets reduced Work time shortened

Other MAGIC FIBER Applications

INSULATION MATERIALS

THERMAL CONDUCTIVITY : 0,0136 W/m Kn

DENSITY : 0,0048 g/ cm³


THICKNESS : + fas 20 mm

The combination of thin and thick fibers creates numerous spaces and gaps. 0.036 \$7.46 \$1650 Successed in providing ustra-high-passormanos insulation performance (thermal conductivity). \$7.46 \$1650 0.038

[Performance Comparison by Insulation Material]

	Type 6	\$14.93 \$3300 0.040 Performance						
Category		thermal 606 ^{0nductivity} .86	adiabatic pro státy 3	sound absorption \$3300 ^{perty} 0.04	flame retardance	moisture permeability	environmental	price
la successi of the succession	glass wool	0.036	0	0	Ø	\bigtriangleup	0	Ø
Inorganic fiber system New textile materials M	AGAGwebber	— 0.03 8	⊂\$10	\$2210 0.03	0 0	Δ	0	Ø
Woody fibre system	cellulose fiber	0.034	0	Ø	O	\bigtriangleup	Ø	\bigtriangleup
Extruded polystyre Wool system	ne foam (one species) 7 wool insulation	200 0.040	\$16.29	\$3600 0.04	0	Δ	O	0
Synthetic fiber system Polyethylene foam	Polyester heat insulating material 7	,200 0,045	\$16.29	\$3600 0.02	.8 0	Δ	O	0
New textile materials	Sample (nanofiber)	0.014	O	Ø	*	O	O	O
Rigid urethane foar Extruded polystyrene foam	n (one species) 8 (one species)	800 \$39.82 0.040	2 \$16.29	\$4400 0.02	.9	Ø		Δ
Polyethylene foam		0.028	Ø			Ø		Δ
Rigid urethane foam (one sp	pecies)	0.029	Ø			Ø		\bigtriangleup

Comparison of Thermal Conductivity W/(m K) n

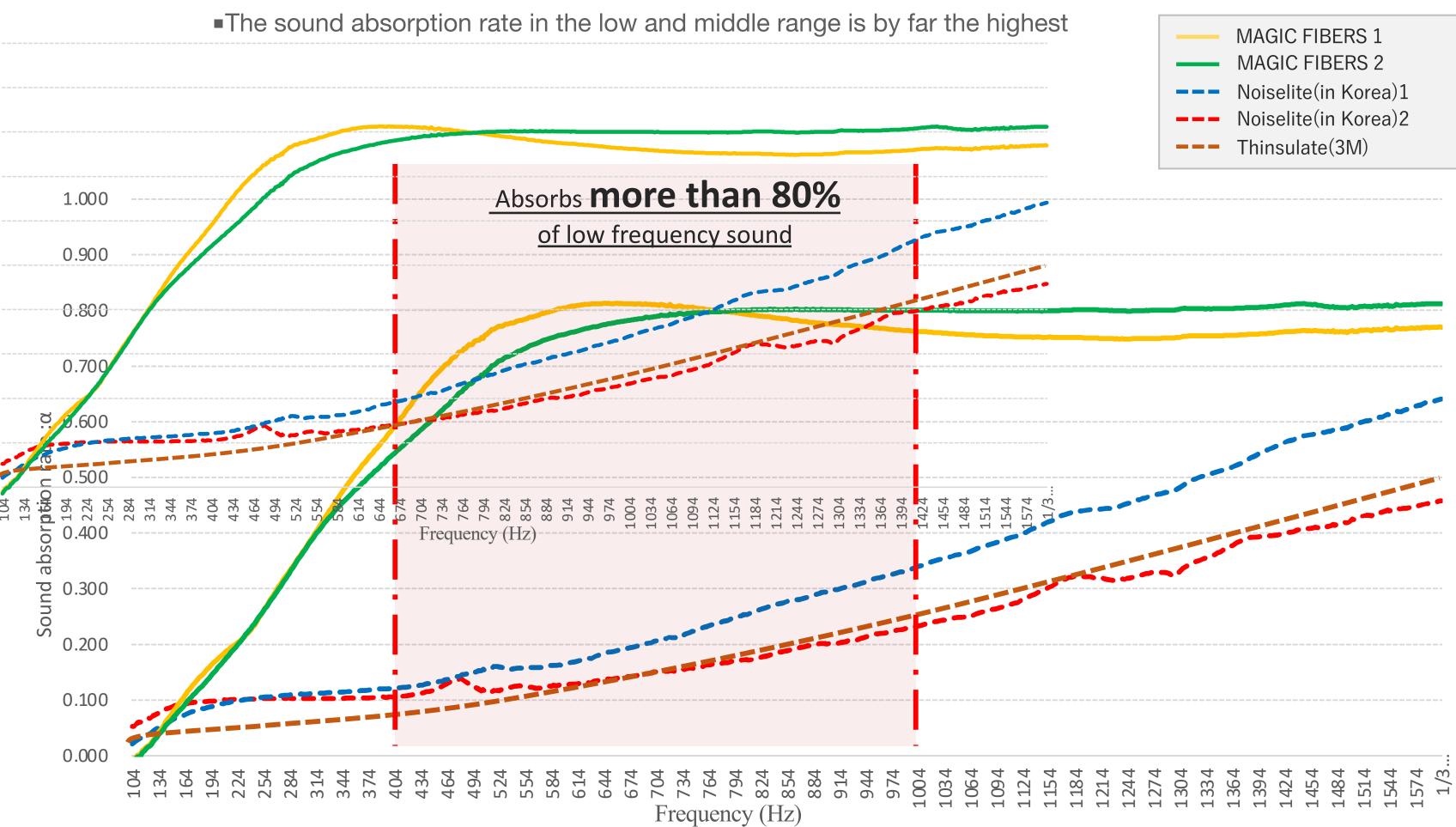
Ms30EehX in-boose investigation

- -- -

* Incombustibility can be realized by mixing with incombustible materials.

Other MAGIC FIBER Applications

SOUND ABSORBING MATERIALS


0.900

0.400

Low frequency 600 Hz sound absorption coefficient Other companies' products: 40% MAGIG 0.600 FIBER : 90% or more

Magic fiber's sound absorbency in low sound ranges outperforms competitive products. It is especially effective at absorbing vehicle vibration and noise. High-range sounds ar^{0,100} also absorbed. A new generation of sound^{1,000} absorbent materials

The main feature of MAGIC FIBER absorber is that it can absorb low frequency sound (400 Hz~1500 Hz), which cannot be achieved with conventional products. It can absorb low frequency sound (400 Hz~1500 Hz), which conventional products cannot.

Other MAGIC FIBER Applications

FILTERS

Achieves HEPA level performance with one substrate (For ready-made products, multiple sheets are used)

1 High collection efficiency with low pressure drops
2 High performance possible with single filters
3 Mass production and highly profitability possible

1 High collection rate and low pressure loss \Rightarrow Collection rate of 99.99% or more, with good breathability.

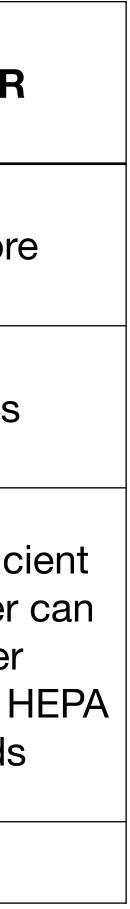
2 A single filter delivers all the performance users need
⇒ High-performance filters at a low cost without
multiple uses

3 Mass production potential
 ⇒ M-TEchX unique nanofiber mass production
 technology enables stable large-scale manufacturing

Item

Collection (The higher better)

Pressure d (the lower better)


Number sheets us (laminatio

Cost

HEPA standards and comparison with other companies' products

	HEPA filter criteria	Products from other companies	MAGIC FIBER
n rate er the r)	99.97%or more	99.97%	99.99% or more
drop r the r)	245 Pa or less	200 Pa or less	189 Pa or less
r of sed ion)	Lamination needed (Use of multiple sheets)	Lamination needed (Use of multiple sheets) Often consists of multiple layers to implement the HEPA standard	1 filter sheet suffic A single filter layer achieve higher performance than H filter standards
		High	Low

TIBTECH INNOVATIONS

Hilal FETOUHI CEO - HEAD OF R&D

©: +33 3 20 85 10 73 m: +33 6 45 63 48 33

@:al.fe@tibtech.com

2A Rue Pierre Antoine Delahousse PA Pierre Mauroy F - 59223 Roncq

